Simil Thomas

Research Scientist

Current

Biography

Dr. Simil Thomas’s research focuses on the computational design and atomistic modeling of advanced battery materials, with a particular emphasis on aqueous electrolytes and electrode-electrolyte interfaces. Using density functional theory (DFT) and ab initio molecular dynamics, he investigates ionic transport, redox stability, and degradation mechanisms in aqueous and beyond-lithium battery chemistries. His work aims to enable safe, efficient, and sustainable energy storage technologies through a deep understanding of materials behavior at the atomic scale.

Selected Publications

(1) Zhu, Y.; Guo, X.; Thomas, S.; Yin, J.; Yuan, Y.; Tian, Z.; Harrison, G. T.; De Wolf, S.; Bakr, O. M.; Mohammed, O. F.; et al. An ultrafast Na-ion battery chemistry through coupling sustainable organic electrodes with modulated aqueous electrolytes. Energy Environ. Sci. 2024, 17, 2480-2491.

(2) Guo, D.; Thomas, S.; El-Demellawi, J. K.; Shi, Z.; Zhao, Z.; Canlas, C. G.; Lei, Y.; Yin, J.; Zhang, Y.; Hedhili, M. N.; et al. Electrolyte engineering for thermally stable Li–S batteries operating from –20 °C to 100 °C. Energy Environ. Sci. 2024, 17, 8151-8161.

(3) Shi, Z.; Thomas, S.; Guo, D.; Tian, Z.; Zhao, Z.; Wang, Y.; Emwas, A.-H.; Wehbe, N.; Melinte, G.; Bakr, O. M.; et al. Solvation Sheath Reorganization by Alkyl Chain Tuning Promises Lean-Electrolyte Li–S Batteries. ACS Energy Lett. 2024, 9, 5391-5402.

(4) Tian, Z.; Kale, V. S.; Thomas, S.; Kandambeth, S.; Nadinov, I.; Wang, Y.; Wahyudi, W.; Lei, Y.; Emwas, A.-H.; Bonneau, M.; et al. An Ultrastable Aqueous Ammonium-Ion Battery Using a Covalent Organic Framework Anode. Adv. Mater. 2024, 36, 2409354.

Research Interests Keywords

computational design atomistic modeling battery materials